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Abstract
This letter discusses magnon-mediated superconductivity in ferromagnetic
metals. The mechanism explains in a natural way the fact that the
superconductivity in UGe2, ZrZn2 and URhGe is apparently confined to the
ferromagnetic phase. The order parameter is a spin anti-parallel component
of a spin-1 triplet with zero spin projection. The transverse spin fluctuations
are pair forming and the longitudinal ones are pair breaking. The competition
between magnons and paramagnons explains the existence of two successive
quantum phase transitions in UGe2, from ferromagnetism to ferromagnetic
superconductivity, and at higher pressure to paramagnetism. The maximum
TSC results from the suppression of the paramagnon contribution. To form
a Cooper pair an electron transfers from one Fermi surface to the other. As
a result, the onset of superconductivity leads to the appearance of two Fermi
surfaces in each of the spin up and spin down momentum distribution functions.
This fact explains the linear temperature dependence at low temperature of the
specific heat, and the experimental results for UGe2.

(Some figures in this article are in colour only in the electronic version)

The discovery of superconductivity in single crystals of UGe2 [1, 2], ZrZn2 [3] and URhGe [4]
revived the interest in the coexistence of superconductivity and ferromagnetism. The
experiments indicate that in very pure systems, and at very low temperature, ferromagnetism
and superconductivity can coexist, with the same electrons that cause the magnetism also
responsible for the superconductivity. The superconductivity is apparently confined to the
ferromagnetic phase. There are two successive quantum phase transitions in UGe2 [1, 2], from
ferromagnetism to ferromagnetic superconductivity, and at higher pressure to paramagnetism.
The specific heat anomaly associated with the superconductivity appears to be absent and the
specific heat depends linearly on the temperature at low temperature [3–5].
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The paramagnon-mediated superconductivity [6, 7] has long been considered the most
promising theory of coexistence of superconductivity and ferromagnetism. The order
parameters are spin parallel components of the spin triplet. The superconductivity in
ZrZn2 was predicted. Nevertheless, the theory meets some difficulties. It predicts that the
superconductivity occurs in both the ferromagnetic and the paramagnetic phases. A solution
of the problem was recently proposed. It has been shown [8] that the critical temperature
is much higher in the ferromagnetic phase than in the paramagnetic one due to the coupling
of the magnons to the longitudinal spin fluctuations. Alternatively, the superconductivity
in the ferromagnetic state of ZrZn2 is explained in [9] as a result of an exchange-type
interaction between the magnetic moments of triplet-state Cooper pairs and the ferromagnetic
magnetization density in the Ginzburg–Landau mean field theory. The Fay and Apple (FA)
theory predicts that spin up and spin down fermions form Cooper pairs, and hence the specific
heat decreases exponentially at low temperature. The phenomenological theories [10, 11]
circumvent the problem, assuming that only majority spin fermions form pairs, and hence
the minority spin fermions contribute the asymptotic of the specific heat. The coefficient
γ = C

T is half the size in the superconducting phase, which closely matches the experiments
with URhGe [4]. But the assumption is quite questionable when the magnetization approaches
zero. The superconducting critical temperature in FA theory increases when the magnetization
decreases and very close to the quantum critical point falls rapidly. It has recently been
the subject of controversial debate. It is obtained in [12], by means of a more complete
Eliashberg treatment, that the transition temperature is nonzero at the critical point. In [13],
however, the authors have shown that the reduction of quasiparticle coherence and life-time
due to spin fluctuations is the pair-breaking process which leads to a rapid reduction of the
superconducting critical temperature near the quantum critical point. Finally, recent studies
of polycrystalline samples of UGe2 show that the T –P phase diagram is very similar to those
of single-crystal specimens of UGe2 [14]. These findings suggest that the superconductivity
in UGe2 is relatively insensitive to the presence of impurities and defects which excludes the
spin parallel pairing.

In the present letter an itinerant system is considered in which the spin- 1
2 fermions

responsible for the ferromagnetism are the same quasiparticles which form the Cooper pairs.
The interaction of quasiparticles cσ (�x)(c+

σ (�x)) with spin fluctuations has the form

Hs− f = J
∫

d3x c+(�x)
�τ
2

c(�x) · �M(�x) (1)

where the transverse spin fluctuations are described by magnons M1(�x)+iM2(�x) = √
2Ma(�x),

M1(�x) − iM2(�x) = √
2Ma+(�x) and the longitudinal spin fluctuations by paramagnons

M3(�x) − M = ϕ(�x). M is the zero-temperature dimensionless magnetization of the system
per lattice site. The magnon’s dispersion is ω(�k) = ρ�k2 where the spin stiffness constant is
proportional to M(ρ = Mρ0), and the paramagnon propagator is [15, 16]

Dpm = 1

r − i ω
| �p| + b �p2

. (2)

The parameter r is the inverse static longitudinal magnetic susceptibility, which measures the
deviation from the quantum critical point. The constants J, ρ0 and b are phenomenological
ones subject to some relations.

Integrating out the spin fluctuations, one obtains an effective four-fermion theory which
can be written as a sum of four terms. Three of them describe the interaction of the components
of spin-1 composite fields (↑↑,↑↓ + ↓↑,↓↓) which have a projection of spin 1, 0 and −1
respectively. The fourth term describes the interaction of the spin singlet composite fields
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↑↓ − ↓↑. The spin singlet fields’ interaction is repulsive and does not contribute to the
superconductivity [17]. The spin parallel fields’ interactions are due to the exchange of
paramagnons and do not contribute to the magnon-mediated superconductivity. The relevant
interaction is that of the ↑↓ + ↓↑ fields. In the static approximation, the Hamiltonian of
interaction is

Hint = − J 2

16

∫ ∏
i

d3ki

(2π)3
[c+

↑(�k1)c
+
↓(�k2) + c+

↓(�k1)c
+
↑(�k2)]

× [c↑(�k2 − �k3)c↓(�k1 + �k3) + c↓(�k2 − �k3)c↑(�k1 + �k3)]V (�k3) (3)

where the potential

V (�k) = 2M

ρ�k2
− 1

r + b�k2
(4)

has an attracting part due to exchange of magnons and a repulsive part due to exchange of
paramagnons. The effective Hamiltonian of the system is

Hef f = H0 + Hint (5)

where H0 is the Hamiltonian of the free spin up and spin down fermions with dispersions

ε↑(�k) = �k2

2m
− µ − J M

2
, ε↓(�k) = �k2

2m
− µ +

J M

2
. (6)

One can obtain the gap equation following the standard technique. To ensure that the fermions
which form Cooper pairs are the same as those responsible for spontaneous magnetization,
one has to consider the equation for the magnetization

M = 1
2 〈c+

↑c↑ − c+
↓c↓〉 (7)

as well. Then the system of equations for the gap and for the magnetization determines the
phase where the superconductivity and the ferromagnetism coexist. The system can be written
in terms of Bogoliubov excitations, which have the following dispersion relations:

E1(�k) = − J M

2
−

√
ε2(�k) + |	(�k)|2 E2(�k) = J M

2
−

√
ε2(�k) + |	(�k)|2 (8)

where 	(�k) is the gap, and ε(�k) = �k2

2m − µ.
At zero temperature the equations take the form

M = 1

2

∫
d3k

(2π)3
[1 − 
(−E2(�k))] (9)

	( �p) = J 2

8

∫
d3k

(2π)3

V ( �p − �k)
(−E2(�k))√
ε2(�k) + |	(�k)|2

	(�k). (10)

The gap is an antisymmetric function 	(−�k) = −	(�k), so that the expansion in terms
of spherical harmonics Ylm(��k) contains only terms with odd l. I assume that the component
with l = 1 and m = 0 is nonzero and the other ones are zero

	(�k) = 	10(k)

√
3

4π
cos θ. (11)

Expanding the potential in terms of Legendre polynomial Pl one obtains that only the
component with l = 1 contributes the gap equation. The potential V1(p, k) has the form

V1(p, k) = 3M

ρ

[
p2 + k2

4 p2k2
ln

(
p + k

p − k

)2

− 1

pk

]
− 3M

ρ
β

[
p2 + k2

4 p2k2
ln

r ′ + (p + k)2

r ′ + (p − k)2
− 1

pk

]
,

(12)
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where 3M
ρ

= 3
ρ0

, β = ρ

2Mb = ρ0
2b > 1 and r ′ = r

b � 1. A straightforward analysis shows that
for a fixed p the potential is positive when k runs over an interval around p(p − �, p + �),
where � is approximately independent of p. In order to allow for an explicit analytic
solution, I introduce further simplifying assumptions by neglecting the dependence of 	10(k)

on k(	10(k) = 	10(p f ) = 	) and setting V1(p f , k) equal to a constant V1 within the interval
(p f − �, p f + �) and zero elsewhere. The system of equations (9), (10) is then reduced to
the system

M = 1

8π2

∫ ∞

0
dk k2

∫ 1

−1
dt[1 − 
(−E2(k, t))] (13)

	 = J 2V1

32π2

∫ p f +�

p f −�

dk k2
∫ 1

−1
dt t2 
(−E2(k, t))√

ε2(k) + 3
4π

t2	2
	 (14)

where t = cos θ .
One looks for a solution of the system which satisfies

√
3
π
	 < J M . Then the equation

E2(k, t) = 0 defines the Fermi surfaces

k±
f =

√
p2

f ± m

√
J 2 M2 − 3

π
t2	2, p f = √

2µm. (15)

The domain between the Fermi surfaces contributes to the magnetization M in equation (13),
but it is cut out from the domain of integration in the gap equation equation (14). One is
primarily interested in determining at what magnetization a superconductivity exists. When
the magnetization increases, the domain of integration in the gap equation decreases. Near the
quantum critical point the size of the gap is small, and hence the linearized gap equation can
be considered. Then it is easy to obtain the critical value of the magnetization MSC

MSC = 4 p2
f

m J

(
1 +

4 p2
f − �2

�2
exp

[
64π2

3J 2V1mp f

])− 1
2
. (16)

Near the second quantum phase transition, when the magnetization approaches zero,
the domain between the Fermi surfaces decreases. One can approximate the equation
for magnetization equation (13) substituting k±

f from equation (15) in the the difference
(k+

f )
2 − (k−

f )2 and setting k±
f = p f elsewhere. Then, in this approximation, the magnetization

is linear in 	, namely

	 =
√

π

3
Jκ M (17)

where κ runs the interval (0, 1), and satisfies the equation

κ
√

1 − κ2 + arcsin κ = 8π2

mp f J
. (18)

The equation (18) has a solution if mp f J > 16π . Substituting M from equation (17) in
equation (14), one arrives at an equation for the gap. This equation can be solved in a standard
way and the solution is

	 =
√

16π

3

�p f κ

m
exp

[
−3

2
I (κ) − 24π2

J 2V1mp f

]

I (κ) =
∫ 1

−1
dt t2 ln(1 +

√
1 − κ2t2).

(19)
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Figure 1. The zero-temperature momentum distribution n, for spin up fermions, as a function of
q = p

p f
and t = cos θ .
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Figure 2. The zero-temperature momentum distribution n, for spin down fermions, as a function
of q = p

p f
and t = cos θ .

Equations (17)–(19) are the solution of the system of equations (13) and (14) near the quantum
transition to paramagnetism.

When superconductivity and ferromagnetism coexist, the momentum distribution
functions n↑(p, t) and n↓(p, t) of the spin up and spin down quasiparticles have two Fermi
surfaces each. One can write them in terms of the distribution functions of the Bogoliubov
fermions

n↑(p, t) = u2(p, t)n1(p, t) + v2(p, t)n2(p, t)
n↓(p, t) = u2(p, t)(1 − n1(p, t)) + v2(p, t)(1 − n2(p, t))

(20)

where u(p, t) and v(p, t) are the coefficients in the Bogoliubov transformation. At zero
temperature n1(p, t) = 1, n2(p, t) = 
(−E2(p, t)), and the Fermi surfaces (15) manifest
themselves both in the spin up and spin down momentum distribution functions. The functions
are depicted in figures 1 and 2.

The two Fermi surfaces are necessary for the existence of itinerant ferromagnetism, and
explain the mechanism of Cooper pairing. In the ferromagnetic phase n↑ and n↓ have different
(majority and minority) Fermi surfaces. To form a spin anti-parallel Cooper pair, the fermion
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has to transfer from one Fermi surface to the other. If the value of the momentum of the emitted
or absorbed magnon lies in the domain where the effective potential is attracting but outside
the domain between the two Fermi surfaces, fermions with opposite spins form a Cooper pair.
As a result, the onset of superconductivity is accompanied by the appearance of a second Fermi
surface in each of the spin up and spin down momentum distribution functions.

The existence of the two Fermi surfaces also explains the linear dependence of the specific
heat at low temperatures as opposed to the exponential decrease of the specific heat in the BCS
theory:

C

T
= 2π2

3
(N+(0) + N−(0)). (21)

Here N±(0) are the densities of states on the Fermi surfaces. One can rewrite the γ = C
T

constant in terms of an elliptic integral of the second kind E(α, x)

γ = mp f

3κ

[
(1 + s)

1
2 E

(
1

2
arcsin κ,

2s

s + 1

)
+ (1 − s)

1
2 E

(
1

2
arcsin κ,

2s

s − 1

)]
(22)

where s = J Mm
p2

f
< 1 and κ =

√
3
π

	
J M . The equation (22) shows that in the ferromagnetic phase

(	 = 0) the specific heat constant γ is smaller than in the superconducting one, which closely
matches the experiments with UGe2 [5]. An important point is that UGe2 is an anisotropic
ferromagnet and hence the magnon has a gap which changes the potential equation (12). The
physical consequence of the change is that the superconductivity disappears before the quantum
phase transition from ferromagnetism to paramagnetism (see [5, 14]). The distance between
these two points depends on the anisotropy.

The presence of an additional phase line Tx and the correlation between a transition at Tx

and the appearance of superconductivity in UGe2 has been proved [2, 5]. It lies entirely within
the ferromagnetic phase and is suggested by a strong anomaly in the resistivity at a temperature
Tx . The maximum transition temperature for superconductivity is near the pressure Px where
Tx vanishes. The authors have assumed that superconductivity is mediated by fluctuations
associated with a (hypothetical) second order critical point Px , with an unidentified order
parameter.

Experimental measurement of ac magnetic susceptibility as a function of the temperature
indicates a peak at the ferromagnetic Curie temperature, as usual. But the peak is substantially
damped at a pressure near the maximal superconducting critical temperature [18]. The
suppression of the peak can be understood as a suppression of the paramagnon contribution,
which in turn means suppression of pair breaking effects and hence higher superconducting
critical temperature. So the proposed model of magnon-mediated superconductivity
complemented by the experimental results explains,at least qualitatively, the superconductivity
in UGe2 without invoking an additional phase transition.

The proposed model of ferromagnetic superconductivity differs from the models discussed
in [6–11] in two ways. First, the superconductivity is due to the exchange of magnons, and
paramagnons have a pair breaking effect. Second, the order parameter is a spin anti-parallel
component of a spin triplet with zero spin projection. The existence of two Fermi surfaces in
each of the spin up and spin down momentum distribution functions is a generic property of a
ferromagnetic superconductivity with spin anti-parallel pairing (see also [19]). They lead to a
linear temperature dependence of the specific heat at low temperature. But the experimental
result has an alternative theoretical explanation in [4, 10, 11]. So, one needs an experiment
which proves undoubtedly the existence of the predicted Fermi surfaces.

The author would like to thank C Pfleiderer and R Rashkov for valuable discussions.
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